Hall Ticket Number:

VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD B.E. (C.S.E. : CBCS) IV-Semester Main Examinations, January-2021. Design and Analysis of Algorithms

Time: 2 hours

Max. Marks: 60

Note: Answer any NINE questions from Part-A and any THREE from Part-B

Part-A $(9 \times 2 = 18 Marks)$

Q. No.	Stem of the question	M	L	СО	PO
1.	Write an algorithm to transpose a matrix of order n X m. Find the space complexity.	2	2	1	1,2
2.	Show that the following equalities are correct	2	3	1	1
	i) $5n^2 - 6n = \Theta(n^2)$ ii) $\frac{6n^3}{(\log n+1)} = O(n^3)$				
3.	Write control abstraction of divide and conquer.	2	2	2	1
4.	Find the minimum cost spanning tree for the graph given below using Kruskal's algorithm	2	3	2	1,2
	$\begin{array}{c} 1 & 28 \\ 10 & 12 \\ 6 & 7 & 3 \end{array}$	e oite			
	25 24 5 22 4				
5.	Consider the following adjacency matrix, find the shortest path from every node to other nodes.	2	3	3	1,2
	$\begin{bmatrix} 0 & 4 & 11 \\ 6 & 0 & 2 \\ 3 & \infty & 0 \end{bmatrix}$				
6.	Find the Bi-connected components of the following graph	2	3	3	1,2
	0 01				

	Cade Ne. 4 142				
7.	Draw the space tree for the graph given below with 3 colors	2	2	4	1,2
	3 4				
8.	Consider n=3, m=20, (P1,P2, P3) = $(25,24,15)$, (W1,W2,W3)= $(18,15,10)$. Find the profit for the 0/1 knapsack problem using LCBB	2	3	4	1,2
9.	Define NP hard and NP complete problems.	2	2	5	1,2
10.	Write nondeterministic algorithm for Searching operation	2	2	5	1,2
11.	Find the Time complexity of the following recurrence relation using substitution method $T(N)=2 T(N/2) + C$, where $T(0)=1$	2	3	1	1
12.	Show how Quicksort sorts the following sequence of keys	2	3	2	1,2
	Part-B $(3 \times 14 = 42 \text{ Marks})$				
13. a)	Explain asymptotic notations used for time complexity with an example	7	2	1	1,2
b)	Write an algorithm to find matrix multiplication. Apply step count method and step table method to find time complexity.	7	3	1	1,2
14. a)	Write an algorithm for Merge Sort. Find the time complexity of Merge Sort algorithm	7	3	2	1,2
b)	What is the solution generated by the function JobSequencing when n=7, $(P1,P2,\ldots,P7) = (3,5,20,18,1,6,30)$ and $(d1,d2,\ldots,d7) = (1,3,4,3,2,1,2)$	7	3	2	1,2
15. a)	Find the shortest path from source (s) to destination (t) by using Backward approach.	8	3	3	1,2
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				
b)	Explain Reliability design problem for the following instance given below	6	3	3	1,2
	C= 106, (c1,c2,c3)=(30,15,20), (r1,r2,r3)=(0.9,0.8,0.5)				

Contd...3

Code No. : 14225

6. a)	Solve the given cost matrix to find the traveling sales person problem using LCBB.	7	3	4	1,2
	$\infty 20 30 10 11$ 15 $\infty 16 4 2$				
	$3 5 \infty 2 4$				
	19 6 18 ∞ 3				
	16 4 7 16 ∞				
b)	Describe the Backtracking solution to find Hamiltonian cycle. Explain with an example.	7	3	4	1,2
17. a)	Explain clique decision problem.	7	3	5	1,2
b)	Write nondeterministic algorithm for sorting of an array.	7	2	5	1,2
18. a)	Explain about the pseudo code conventions used for algorithm specification.	7	2	1	1,2
b)	Design a ternary search algorithm that first tests the element at position $n/3$ for equality with the key value x, and then checks the element at $2n/3$ and either discovers x or reduces the set size to one-third the size of original. Compare the time complexity with the binary search.	7	3	2	1,2
19.	Answer any two of the following:				
a)	Consider n=4 and $(q 1, q 2, q 3, q 4) = (do, if, int, while)$ the values for P's and q's are given as P(1:4) = (3, 3, 1, 1) and q(0:4) = (2, 3, 1, 1, 1). Construct the optimal binary search tree.	7	3	3	1,2
b)	Describe the n-queens problem using backtracking	7	2	4	1,
c)	State and Prove Cooks theorem	7	3	5	1,

S. No.	Criteria for questions	Percentage
1	Fundamental knowledge (Level-1 & 2)	30
2	Knowledge on application and analysis (Level-3 & 4)	70
3	*Critical thinking and ability to design (Level-5 & 6)	Auro Augel
	(*wherever applicable)	
