VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD

> B.E. (C.S.E. : CBCS) IV-Semester Main Examinations, January-2021.
> Design and Analysis of Algorithms

Time: $\mathbf{2}$ hours
Max. Marks: 60
Note: Answer any NINE questions from Part-A and any THREE from Part-B
Part-A $(9 \times 2=18$ Marks $)$

7. Draw the space tree for the graph given below with 3 colors

8. Consider $\mathrm{n}=3, \mathrm{~m}=20,(\mathrm{P} 1, \mathrm{P} 2, \mathrm{P} 3)=(25,24,15),(\mathrm{W} 1, \mathrm{~W} 2, \mathrm{~W} 3)=(18,15,10)$.

Find the profit for the $0 / 1$ knapsack problem using LCBB
9. Define NP hard and NP complete problems.
10.
11. Find the Time complexity of the following recurrence relation using substitution method $T(N)=2 T(N / 2)+C$, where $T(0)=1$
12. Show how Quicksort sorts the following sequence of keys

1,1,1,1,1,1,1,1

$$
\text { Part-B }(3 \times 14=42 \text { Marks })
$$

13. a) Explain asymptotic notations used for time complexity with an example
b) Write an algorithm to find matrix multiplication. Apply step count method and step table method to find time complexity.
14. a) Write an algorithm for Merge Sort. Find the time complexity of Merge Sort algorithm
b) What is the solution generated by the function JobSequencing when $n=7$, $(\mathrm{P} 1, \mathrm{P} 2, \ldots . \mathrm{P} 7)=(3,5,20,18,1,6,30)$ and $(\mathrm{d} 1, \mathrm{~d} 2, \ldots . \mathrm{d} 7)=(1,3,4,3,2,1,2)$
15. a) Find the shortest path from source (s) to destination (t) by using Backward approach.

b) Explain Reliability design problem for the following instance given below $\mathrm{C}=106,(\mathrm{c} 1, \mathrm{c} 2, \mathrm{c} 3)=(30,15,20),(\mathrm{r} 1, \mathrm{r} 2, \mathrm{r} 3)=(0.9,0.8,0.5)$

2	2	4	1,2
2	3	4	1,2
2	2	5	1,2
2	2	5	1,2
2	3	1	1

2321,2

| 7 | 2 | 1 |
| :--- | :--- | :--- | :--- |

7	3	1	1,2

731,2

731,2

16. a) Solve the given cost matrix to find the traveling sales person problem using LCBB.

∞	20	30	10	11
15	∞	16	4	2
3	5	∞	2	4
19	6	18	∞	3
16	4	7	16	∞

b) Describe the Backtracking solution to find Hamiltonian cycle. Explain with an example.
17. a) Explain clique decision problem.
b) Write nondeterministic algorithm for sorting of an array.
18. a) Explain about the pseudo code conventions used for algorithm specification.
b) Design a ternary search algorithm that first tests the element at position $n / 3$ for equality with the key value x, and then checks the element at $2 n / 3$ and either discovers x or reduces the set size to one-third the size of original. Compare the time complexity with the binary search.
19. Answer any two of the following:
a) Consider $n=4$ and $(q 1, q 2, q 3, q 4)=(d o$, if, int, while) the values for P 's and q 's are given as $P(1: 4)=(3,3,1,1)$ and $q(0: 4)=(2,3,1,1,1)$. Construct the optimal binary search tree.
b) Describe the n-queens problem using backtracking
c) State and Prove Cooks theorem

M: Marks; L: Bloom's Taxonomy Level; CO: Course Outcome; PO: Programme Outcome

S. No.	Criteria for questions	Percentage
1	Fundamental knowledge (Level-1 \& 2)	30
2	Knowledge on application and analysis (Level-3 \& 4)	70
3	*Critical thinking and ability to design (Level-5 \& 6) (*wherever applicable)	--

